
GEOMETRIC OPERATIONS

1

Geometric Operations

◻ Previous operations have taken a sample at some location and changed the
sample value (the light intensity) but left the location unchanged.

◻ Geometric operations take a sample and change it’s location in the destination
while leaving the sample value unchanged.

◻ In general, geometric operations take a source pixel at some location (x,y) and
map it to location (x’, y’) in the destination.

(x’,y’)
(x,y)

I(x,y) I’(x’,y’)
2

Image transformations can we do?

changes range of image function changes domain of image function

Filterin
g

Warpin
g

g(x)=T(f (x))

f

g

f

g

g(x)=f (T(x))

3

Warping example

◻ object recognition

◻ 3D reconstruction

◻ augmented reality

◻ image stitching
Given a set of matched feature
points:

and a
transformation:

find the best estimate of the
parameters

parameter
s

transformatio
n

function

point in one
image

point in the
other image

What kind of transformation functions are
there?

4

2D transformations

translation rotation aspect

affine perspective cylindrical
5

Affine Transformations

◻ The mapping between (x,y) and (x’, y’) can be generalized as

🞑 Tx and Ty are transformation functions that produce output coordinates based on the x and y coordinates of
the input pixel.

🞑 Both functions produce real values as opposed to integer coordinates and are assumed to be well defined at
all locations in the image plane.

(x’,y’)
(x,y)

I(x,y) I’(x’,y’)

I(x,y) = I’ (x’,y’)= I’ (Tx(x,y), Ty(x,y))

6

Affine Transformations

◻ The simplest kind of transformations are linear

🞑 x’ and y’ are linearly related to (x, y)

🞑 All linear transformations are known as affine transformations

◻ Properties of affine transformations

🞑 A straight line in the source is straight in the destination

🞑 Parallel lines in the source are parallel in the destination

◻ The six coefficients determine the exact effect of the transform.
7

Affine Transformations

◻ Can be written in homogeneous matrix equation

8

Affine Transformations - Translation

(x,y)

I(x,y) I’(x’,y’)

(x’,y’)

x' = Tx(x,y),= x + 3

y' = Ty(x,y),= y − 1
a1 = 1, b1 = 0, c1 = 3 =

tx

a2 = 0, b2 = 1, c2 = −1 =

ty

9

Affine Transformations - Scaling

◻ To shrink or zoom the size of an image (or part of an image).

◻ To change the visual appearance of an image;

◻ To alter the quantity of information

◻ To use as a low-level pre-processor in multi-stage image processing chain which operates on
features of a particular scale.

x' = Tx(x,y),= x * sx

y' = Ty(x,y),= y * sy

Unifor
m
Scaling

Non-
uniform
Scaling

10

Affine Transformations - Rotation

◻ maps the input position onto a output position by rotating it through an angle about an
origin.

◻ Commonly used to improve the visual appearance of an image.

◻ useful as a pre-processor in applications where directional operators are involved.

◻ Mapping of a point (x,y) to another (x’,y’) through a counter-clockwise rotation of θ

11

rotation around
the origin

Polar coordinates…

x = r cos (φ)

y = r sin (φ)

x' = r cos (φ + θ)

y' = r sin (φ + θ)

Trigonometric Identity…

x' = r cos(φ) cos(θ) – r sin(φ) sin(θ)

y' = r sin(φ) cos(θ) + r cos(φ) sin(θ)

Substitute…

x' = x cos(θ) - y sin(θ)

y' = x sin(θ) + y cos(θ)

or in matrix
form:

12

Affine Transformations

◻ Shear: ◻ Reflection

13

Types of linear 2D transformations

◻ Rigid (Euclidean) transformation:

🞑 Translation + Rotation (distance preserving).

◻ Similarity transformation:

🞑 Translation + Rotation + Uniform Scale (angle preserving).

◻ Affine transformation:

🞑 Translation + Rotation + Scale + Shear (parallelism preserving).

◻ Projective transformation

🞑 Cross-ratio preserving

◻ All above transformations are groups where Rigid ⊂ Similarity

⊂ Affine ⊂ Projective

Before After

14

15

Affine Transformations

Explain what the following transformation matrices accomplishes

1.0 0.25 0.0

0.5 1.0 0.0

0.0 0.0 1.0

16

Affine Transformations

Explain what the following transformation matrices accomplishes

.87 -0.5 0.0

0.5 .87 0.0

0.0 0.0 1.0

17

Affine Transformations

Explain what the following transformation matrix accomplishes

0.5 0.0 0.0

0.0 2.0 0.0

0.0 0.0 1.0

18

Affine Transformations

Explain what the following transformation matrices accomplishes

1.0 0.25 0.0

0.0 1.0 0.0

0.0 0.0 1.0

Homogeneous Coordinates

◻ Homogeneous Coordinates is a mapping from Rn to Rn+1:

◻ Note: (tx,ty,t) all correspond to the same non-homogeneous point (x,y). E.g.
(2,3,1)≡(6,9,3) ≡(4,6,2).

◻ Inverse mapping:

19

Some 2D Transformations – homogeneous eqn

◻ Translation :

◻ Scale:

◻ Rotation:

◻ Shear:

20

Affine Transformations

◻ A single homogeneous matrix can also represent a sequence of individual
affine operations.

◻ Let A and B represent affine transformation matrices

🞑 the affine matrix corresponding to the application of A followed by B is given as BA

🞑 BA is itself a homogeneous transformation matrix.

🞑 Matrix multiplication, also termed concatenation, therefore corresponds to the sequential
composition of individual affine transformations.

🞑 Note that the order of multiplication is both important and opposite to the way the
operations are mentally envisioned.

21

Affine Transformations

◻ While we speak of transform A followed by transform B, these operations are
actually composed as matrix B multiplied by (or concatenated with) matrix A.

◻ Assume, for example, that matrix A represents a rotation of 30 degrees about
the origin and matrix B represents a horizontal shear by a factor of .5. The
affine matrix corresponding to the rotation followed by shear is given as BA.

AB B.A

22

Matrix composition

Transformations can be combined by matrix multiplication:

p’ = translation(tx,ty) rotation(θ) scale(s,s) p

Does the multiplication order matter?

23

Some 2D Transformations – homogeneous eqn

◻ Translation :

◻ Scale:

◻ Affine:

◻ Rotation:

◻ Shear:

◻ Projective:

24

Affine transformations

◻ Combinations of arbitrary (4-DOF) linear transformations; and translations

◻ Properties of affine transformations:

🞑 origin does not necessarily map to origin

🞑 lines map to lines

🞑 parallel lines map to parallel lines

🞑 ratios are preserved

🞑 compositions of affine transforms are also affine transforms
Remains

same

25

Projective transformations

◻Combinations of

🞑 affine transformations; and

🞑 projective warps

26

Projective transformations

◻Combinations of

🞑 affine transformations; and

🞑 projective warps

◻ Properties:

🞑 origin does not necessarily map to origin

🞑 lines map to lines

🞑 parallel lines do not necessarily map to parallel lines

🞑 ratios are not necessarily preserved

🞑 compositions of projective transforms are also

projective transforms

8 DOF: vectors (and therefore
matrices) are defined up to scale)

27

Hierarchy of Linear 2D Transformations

28

Issues with geometric ops

◻ During point and spatial processing

🞑 Source and destination images were the same size

🞑 Color depth was occasionally different

◻ During geometric processing

🞑 Source and destination images may not be the same size

🞑 Output locations may not be integer values!

🞑 ‘Gaps’ may occur when mapping inputs to outputs

29

Point Transformation

◻ Example. Consider rotating an image by 30 degrees clockwise. Note that
cos(30) is .866 and sin(30) is -.5.

◻ The transformation is given by

◻ Consider relocating the sample at (10, 20)

10
20
1

30

Two Issues

◻ Two issues:

🞑 Dimensionality: The destination image may not be large enough to contain all of the
processed samples

🞑 Mapping: Transformed locations are not integers: How can we place a source sample at a
non-integer location in the destination?

31

Two Issues: Dimensionality

◻ Consider a source image that is rotated about the origin such that some
pixels are mapped outside of the bounds of the source.

◻ Implementations must allow the destination to contain the entire rotated
image.

🞑 Both the width and height of the destination image must be increased beyond that
of the source.

🞑 Can compute the destination dimensions by transforming the bounds and using the
width and height of the bounds as the destination dimensions.

32

Two Issues: Mapping

◻ how integer-valued source coordinates are mapped
onto integer-valued destination coordinates

🞑 Forward mapping takes each pixel of the source image and
copies it to a location in the destination by rounding the
destination coordinates so that they are integer values.

■ generally poor results since certain pixels of the destination image
may remain unfilled.

■ Example: a source image is rotated by 45 degrees using a forward
mapping strategy.

■ Example: scaling an image to make it larger!

33

Forward Warping

◻ Send each pixel’s intensity/color f(x) to its corresponding location x’ =
T(x) in g(x’)

• What if pixel lands “between” two pixels?

Szeliski

f(x) g(x’)
x x’

T(x)

34

Forward Mapping

🞑 Forward mapping:

🞑 Problems with forward mapping due to sampling:

■ Holes (some target pixels are not populated)

■ Overlaps (some target pixels assigned few colors)

Source Target

35

Forward Mapping

36

Inverse/Backward Warping

◻ Get each pixel’s color/intensity g(x’) from its corresponding location x =
T-1(x’) in f(x)

• What if pixel comes from “between” two pixels?

Szeliski

f(x) g(x’)
x x’

T-1(x)

37

Backward mapping

◻ Backward mapping solves the gap problem caused by forward mapping.

🞑 An empty destination image is created and each location in the destination is mapped backwards onto the
source.

🞑 The source location may not be integer-valued coordinates; hence a sample value is obtained via
interpolation.

◻ Let T be a given affine transform matrix and

🞑 let x = [x, y, 1]T be a location in the given source image

🞑 x′ = [x′,y′,1]T be a location in the destination image such that

◻ We can backward map the transformation as

x′ = Tx

x = T−1 x′

38

Basic Inverse Operations

◻ Inverse Mapping of a point (x’,y’) to (x,y)

Rotation

Translatio
n

scalin
g39

Inverse Transformations

◻ Translation :

◻ Scale:

◻ Rotation:

◻ Shear:

40

Inverse Transformations

◻ The inverse of a 2D linear
transformation is

◻ Let an affine transformation matrix

41

Inverse Transformations

◻ The inverse of a 2D linear
transformation is

◻ Let an affine transformation matrix

42

Inverse Transformations

◻ Let an affine transformation matrix

43

Backward Mapping

∙ Inverse mapping:

∙ Each target pixel assigned a single color.

∙ Color Interpolation is required.

TargetSource

44

Example: Scaling along X

◻ Forward mapping:

◻ Backward mapping:

(0,0)

(0,0)

Source Target

Source Target

x

y

X’

y’

X’

y’

x

y

45

Interpolation

◻ What happens when a mapping function calculates a fractional pixel address?

◻ Interpolation: generates a new pixel by analyzing the surrounding pixels.

46

Interpolation

◻ Creates new samples from existing image samples.

◻ Increases the resolution of an image by adding virtual samples at all
points within the image boundary.

◻ Common interpolation techniques:

🞑 zero order – nearest neighbor

🞑 first order – (bilinear)

🞑 second order – (bicubic)

47

Nearest Neighbor

◻ Nearest neighbor interpolation.

🞑 Assume that a destination location (x’ y’) maps backward to source location (x, y).

🞑 The source pixel nearest location (x, y) is located at (round(x), round(y)) and the
source pixel at that image is then carried over as the value of the destination.

◻ Nearest neighbor interpolation is computationally efficient but of
generally poor quality, producing images with jagged edges and high
graininess.

48

Nearest Neighbor Interpolation

◻ The assign value is taken from the pixel closest to the generated location:

◻ Advantage:

🞑 Fast

◻ Disadvantage:

🞑 Jagged results

🞑 Discontinuous results

49

Bilinear Interpolation

◻ The assign value is a weighted sum of the four nearest pixels.

◻ Each weight is proportional to the distance from each existing pixel.

50

Bilinear Interpolation

◻ Bilinear interpolation assumes that the continuous image is a linear
function of spatial location.

🞑 Linear, or first order, interpolation combines the four points surrounding location
(x,y)

🞑 (x, y) is the backward mapped coordinate that is surrounded by the four samples at
(j,k) (j, k+1), (j+1, k), and (j+1, k+1)

51

Bilinear Interpolation

◻ Bilinear interpolation is a weighted average where pixels closer to the backward mapped coordinate are
weighted proportionally heavier than those pixels further away.

◻ Bilinear interpolation acts like something of a rigid mechanical system

🞑 Two rods vertically connect the four samples surrounding the backward mapped coordinate.

🞑 A third rod is connected horizontally which is allowed to slide vertically up and down the fixture.

🞑 A ball is attached to this horizontal rod and is allowed to slide freely back and forth across the central rod.

🞑 The height of the ball determines the interpolated sample value wherever the ball is located.

🞑 In this way it should be clear that all points within the rectangular area bounded by the four corner posts have implicit, or interpolated,
sample values.

52

Bilinear Interpolation

(j,k) (j+1,k)

(j,k+1) (j+1,k+1)

(x,y)

b

a

53

Example

54

Original Image Nearest N.
Interpolatio

n

Example

55

Original Image Bilinear
Interpolatio

n

Example

56

Original Image

Nearest N.
Interpolatio

n
57

Original Image

Bilinear
Interpolatio

n
58

Bicubic Interpolation

◻ In bi-cubic interpolation, the destination sample is a non-linear weighted

sum of the 4x4 nearest pixels of the reverse mapped location.

◻ Properties of second order interpolation

🞑 everywhere continuous

🞑 more computational effort required

59

Bicubic Interpolation

60

How can we find the right coefficients?

◻ Denote the pixel values Vpq {p,q=0..3}

◻ The unknown coefficients are aij {i,j=0..3}

s

t

• We have a linear system of 16
equations with 16 coefficients.

• The pixel’s boundaries are C1

continuous (continuous derivatives
across boundaries).

61

N.N Bilinear Bicubic

62

Interpolation

◻ Good interpolation techniques attempt to find an optimal balance between three
undesirable artifacts: edge halos, blurring and aliasing.

x4 scaling

N.N Bilinear Bicubic

63

Bicubic
64

Applying the Transformation

T = …… % 2x2 transformation matrix
[r,c] = size(img)

% create array of destination x,y coordinates
[X,Y]=meshgrid(1:c,1:r);

% calculate source coordinates
sourceCoor = inv(T) * [X(:) Y(:)] ‘ ;

% calculate nearest neighbor interpolation
Xs = round(sourceCoor(1,:));
Ys = round(sourceCoor(2,:));

indx=find(Xs<1 | Xs>r); %out of range pixels
Xs(indx)=1; Ys(indx)=1;

indy=find(Ys<1 | Ys>c); %out of range pixels
Xs(indy)=1; Ys(indy)=1;

% calculate new image
newImage = img((Xs-1).*r+Ys);
newImage(indx)=0; newImage(indx)=0;
newImage = reshape(newImage,r,c);

65

0 1 2

Numerical Example: 30° Rotation

2 5 3

6 1 4

8 7 9

4 5 3

x' = 2cos30 – 3sin30 = 0.23 = 0

3

2

1

0

y

y' = 2sin30 + 3cos30 = 3.6 = 4

x

x' = 0cos30 – 3sin30 = -1.5 = -2

y' = 0sin30 + 3cos30 = 2.6 = 3

-2 -1 0 1 2
x'

y'

x’ = 2cos30 – 0sin30 = 1.73 = 2

y’ = 2sin30 + 0cos30 = 1

4

3

2

1

0x' = 0cos30 – 0sin30 = 0

y' = 0sin30 + 0cos30 = 0
Min
x’

Max x’

Min
y’

Max y’
66

x = 1cos30 + 2sin30 = 1.87

y = -1sin30 + 2cos30 = 1.23

J=1, k = 1, a = 0.87, b =0.23

0 1 2

2 5 3

6 1 4

8 7 9

4 5 3

3

2

1

0

y

x
-2 -1 0 1 2

x'

y'

4

3

2

1

0

8

67

Final
0 padding an bilinear intp.

0 0 2 0 0

1 4 3 2 0

1 5 3 8 2

0 5 7 6 2

0 1 4 2 0

-2 -1 0 1 2
x'

y'

4

3

2

1

0

0 1 2

2 5 3

6 1 4

8 7 9

4 5 3

3

2

1

0

y

x

68

Computation in
excel

69

Computation in
excel

70

Non Linear 2D Transformations

◻ Non linear transformations do not necessarily preserve straight lines.

◻ Methods:

🞑 Piecewise linear transformations

🞑 Non linear parametric mapping

71

Non Linear 2D Transformations

72

Non Linear 2D Transformations

◻ Twirl:

🞑 Rotate image by angle α at center or anchor point (xc,yc)

🞑 Increasingly rotate image as radial distance r from center
increases (up to rmax)

🞑 Image unchanged outside radial distance rmax

73

Non Linear 2D Transformations

74

Non Linear 2D Transformations

75

Non Linear 2D Transformations

76

Non Linear 2D Transformations

77

Non Linear 2D Transformations

78

Non Linear 2D Transformations

79

Non Linear 2D Transformations

80

Polynomial Transformations

◻ It belongs to the class of nonlinear mappings.

◻ it can approximate wider group of transformations than for example the affine
mappings.

◻ It can be defined as follows y = W · P (x)

x denotes the input vector (a point), y is an output vector,
W is a transformation matrix and P denotes a polynomial on x.

the second-order polynomial transformation for which W
and P can be stated as follows:

81

Polynomial Transformations

◻ In contrast to the affine transformations – where elements of the
transformation matrix can easily be found from given intuitive parameters,
such as a rotation angle or scale

◻ The 12 parameters wij in W need to be determined for a mapping are usually
unknown in analytical form.

◻ This can be achieved after manual (empirical) choice of the number of control
points (at least six, since each point gives two equations) and their
corresponding positions in the output image.

◻ Then the eqn is solved for W. For the more general case of more than six
corresponding points this can be achieved by the least-squares method

82

Polynomial Transformations - inverse warping

W = [0, 1, 0, 0.001, −0.001, 0.001]
[0, 0, 1, 0.001, −0.001, 0.001];

W = [0, 1, 0, 0, −0.001, 0]
[0, 0, 1, 0.001, −0.005, 0.001]83

◻ Digital Image Processing – Chapter 21

🞑 An Algorithmic Introduction Using Java

■ Wilhelm Burger • Mark J. Burge

◻ An Introduction to 3D Computer Vision Techniques and Algorithms –
Chapter 12

■ Bogusław Cyganek, J. Paul Siebert

◻ Fundamentals of Digital Image Processing – Chapter 7
■ Chris Solomon, Toby Breckon

◻ Principles of Digital Image Processing, Core Algorithms– Chapter 10
■ Wilhelm Burger • Mark J. Burge

84

	Slide 1: GEOMETRIC OPERATIONS
	Slide 2: Geometric Operations
	Slide 3: Image transformations can we do?
	Slide 4: Warping example
	Slide 5: 2D transformations
	Slide 6: Affine Transformations
	Slide 7: Affine Transformations
	Slide 8: Affine Transformations
	Slide 9: Affine Transformations - Translation
	Slide 10: Affine Transformations - Scaling
	Slide 11: Affine Transformations - Rotation
	Slide 12
	Slide 13: Affine Transformations
	Slide 14: Types of linear 2D transformations
	Slide 15: Affine Transformations
	Slide 16: Affine Transformations
	Slide 17: Affine Transformations
	Slide 18: Affine Transformations
	Slide 19: Homogeneous Coordinates
	Slide 20: Some 2D Transformations – homogeneous eqn
	Slide 21: Affine Transformations
	Slide 22: Affine Transformations
	Slide 23: Matrix composition
	Slide 24: Some 2D Transformations – homogeneous eqn
	Slide 25: Affine transformations
	Slide 26: Projective transformations
	Slide 27: Projective transformations
	Slide 28: Hierarchy of Linear 2D Transformations
	Slide 29: Issues with geometric ops
	Slide 30: Point Transformation
	Slide 31: Two Issues
	Slide 32: Two Issues: Dimensionality
	Slide 33: Two Issues: Mapping
	Slide 34: Forward Warping
	Slide 35: Forward Mapping
	Slide 36: Forward Mapping
	Slide 37: Inverse/Backward Warping
	Slide 38: Backward mapping
	Slide 39: Basic Inverse Operations
	Slide 40: Inverse Transformations
	Slide 41: Inverse Transformations
	Slide 42: Inverse Transformations
	Slide 43: Inverse Transformations
	Slide 44: Backward Mapping
	Slide 45: Example: Scaling along X
	Slide 46: Interpolation
	Slide 47: Interpolation
	Slide 48: Nearest Neighbor
	Slide 49: Nearest Neighbor Interpolation
	Slide 50: Bilinear Interpolation
	Slide 51: Bilinear Interpolation
	Slide 52: Bilinear Interpolation
	Slide 53: Bilinear Interpolation
	Slide 54: Example
	Slide 55: Example
	Slide 56: Example
	Slide 57
	Slide 58
	Slide 59: Bicubic Interpolation
	Slide 60: Bicubic Interpolation
	Slide 61
	Slide 62
	Slide 63: Interpolation
	Slide 64
	Slide 65: Applying the Transformation
	Slide 66: Numerical Example: 30° Rotation
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71: Non Linear 2D Transformations
	Slide 72: Non Linear 2D Transformations
	Slide 73: Non Linear 2D Transformations
	Slide 74: Non Linear 2D Transformations
	Slide 75: Non Linear 2D Transformations
	Slide 76: Non Linear 2D Transformations
	Slide 77: Non Linear 2D Transformations
	Slide 78: Non Linear 2D Transformations
	Slide 79: Non Linear 2D Transformations
	Slide 80: Non Linear 2D Transformations
	Slide 81: Polynomial Transformations
	Slide 82: Polynomial Transformations
	Slide 83: Polynomial Transformations - inverse warping
	Slide 84

