
GEOMETRIC OPERATIONS
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Geometric Operations

◻ Previous operations have taken a sample at some location and changed the 
sample value (the light intensity) but left the location unchanged.

◻ Geometric operations take a sample and change it’s location in the destination 
while leaving the sample value unchanged.

◻ In general, geometric operations take a source pixel at some location (x,y) and 
map it to location (x’,  y’) in the destination. 

(x’,y’)
(x,y)

I(x,y) I’(x’,y’)
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Image transformations can we do?

changes range of image function changes domain of image function

Filterin
g

Warpin
g

g(x)=T(f (x))

f

g

f

g

g(x)=f (T(x))
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Warping example

◻ object recognition

◻ 3D reconstruction

◻ augmented reality

◻ image stitching
Given a set of matched feature 
points:

and a 
transformation:

find the best estimate of the 
parameters

parameter
s

transformatio
n

function

point in one 
image

point in the 
other image

What kind of transformation functions      are 
there?
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2D transformations

translation rotation aspect

affine perspective cylindrical
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Affine Transformations

◻ The mapping between (x,y) and (x’, y’) can be generalized as 

🞑 Tx and Ty are transformation functions that produce output coordinates based on the x and y coordinates of 
the input pixel. 

🞑 Both functions produce real values as opposed to integer coordinates and are assumed to be well defined at 
all locations in the image plane. 

(x’,y’)
(x,y)

I(x,y) I’(x’,y’)

I(x,y) = I’ (x’,y’ )= I’ (Tx(x,y), Ty(x,y))
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Affine Transformations

◻ The simplest kind of transformations are linear

🞑 x’ and y’ are linearly related to (x, y)

🞑 All linear transformations are known as affine transformations

◻ Properties of affine transformations

🞑 A straight line in the source is straight in the destination

🞑 Parallel lines in the source are parallel in the destination

◻ The six  coefficients determine the exact effect of the transform.
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Affine Transformations

◻ Can be written in homogeneous matrix equation
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Affine Transformations - Translation

(x,y)

I(x,y) I’(x’,y’)

(x’,y’)

x' = Tx(x,y),= x + 3

y' = Ty(x,y),= y − 1
a1 = 1,     b1 = 0,     c1 = 3    = 

tx

a2 = 0,     b2 = 1,     c2 = −1  = 

ty
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Affine Transformations - Scaling

◻ To shrink or zoom the size of an image (or part of an image). 

◻ To change the visual appearance of an image; 

◻ To alter the quantity of information 

◻ To use as a low-level pre-processor in multi-stage image processing chain which operates on 
features of a particular scale. 

x' = Tx(x,y),= x * sx

y' = Ty(x,y),= y * sy

Unifor
m
Scaling

Non-
uniform
Scaling
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Affine Transformations - Rotation

◻ maps the input position  onto a output position  by rotating it through an angle about an 
origin.

◻ Commonly used to improve the visual appearance of an image.

◻ useful as a pre-processor in applications where directional operators are involved. 

◻ Mapping of a point (x,y)  to another (x’,y’) through a counter-clockwise  rotation of θ
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rotation around 
the origin

Polar coordinates…

x = r cos (φ)

y = r sin (φ)

x' = r cos (φ + θ)

y' = r sin (φ + θ)

Trigonometric Identity…

x' = r cos(φ) cos(θ) – r sin(φ) sin(θ)

y' = r sin(φ) cos(θ) + r cos(φ) sin(θ)

Substitute…

x' = x cos(θ) - y sin(θ)

y' = x sin(θ) + y cos(θ)

or in matrix 
form:
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Affine Transformations 

◻ Shear: ◻ Reflection
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Types of linear 2D transformations

◻ Rigid (Euclidean) transformation:

🞑 Translation + Rotation (distance preserving). 

◻ Similarity transformation:

🞑 Translation + Rotation + Uniform Scale  (angle preserving).

◻ Affine transformation:

🞑 Translation + Rotation + Scale + Shear (parallelism preserving). 

◻ Projective transformation 

🞑 Cross-ratio preserving

◻ All above transformations are groups where Rigid ⊂ Similarity 

⊂ Affine ⊂ Projective

Before           After
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Affine Transformations

Explain what the following transformation matrices accomplishes

1.0 0.25 0.0

0.5 1.0 0.0

0.0 0.0 1.0
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Affine Transformations

Explain what the following transformation matrices accomplishes

.87 -0.5 0.0

0.5 .87 0.0

0.0 0.0 1.0
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Affine Transformations

Explain what the following transformation matrix accomplishes

0.5 0.0 0.0

0.0 2.0 0.0

0.0 0.0 1.0
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Affine Transformations

Explain what the following transformation matrices accomplishes

1.0 0.25 0.0

0.0 1.0 0.0

0.0 0.0 1.0



Homogeneous Coordinates

◻ Homogeneous Coordinates is a mapping from Rn to Rn+1:  

◻ Note:  (tx,ty,t) all correspond to the same non-homogeneous point (x,y).    E.g. 
(2,3,1)≡(6,9,3) ≡(4,6,2).

◻ Inverse mapping:
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Some 2D Transformations – homogeneous eqn

◻ Translation :

◻ Scale:

◻ Rotation:

◻ Shear:
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Affine Transformations

◻ A single homogeneous matrix can also represent a sequence of individual 
affine operations. 

◻ Let A and B represent affine transformation matrices

🞑 the affine matrix corresponding to the application of A followed by B is given as BA

🞑 BA is itself a homogeneous transformation matrix. 

🞑 Matrix multiplication, also termed concatenation, therefore corresponds to the sequential 
composition of individual affine transformations. 

🞑 Note that the order of multiplication is both important and opposite to the way the 
operations are mentally envisioned.
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Affine Transformations

◻ While we speak of transform A followed by transform B, these operations are 
actually composed as matrix B multiplied by (or concatenated with) matrix A. 

◻ Assume, for example, that matrix A represents a rotation of  30 degrees about 
the origin and matrix B represents a horizontal shear by a factor of .5.  The 
affine matrix corresponding to the rotation followed by shear is given as BA. 

AB B.A
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Matrix composition

Transformations can be combined by matrix multiplication:

p’     =    translation(tx,ty)           rotation(θ)                     scale(s,s)            p

Does the multiplication order matter?
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Some 2D Transformations – homogeneous eqn

◻ Translation :

◻ Scale:

◻ Affine:

◻ Rotation:

◻ Shear:

◻ Projective:
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Affine transformations

◻ Combinations of arbitrary (4-DOF) linear transformations; and translations

◻ Properties of affine transformations:

🞑 origin does not necessarily map to origin

🞑 lines map to lines

🞑 parallel lines map to parallel lines

🞑 ratios are preserved

🞑 compositions of affine transforms are also affine transforms
Remains 

same
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Projective transformations

◻Combinations of 

🞑 affine transformations; and

🞑 projective warps
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Projective transformations

◻Combinations of 

🞑 affine transformations; and

🞑 projective warps

◻ Properties:

🞑 origin does not necessarily map to origin

🞑 lines map to lines

🞑 parallel lines do not necessarily map to parallel lines

🞑 ratios are not necessarily preserved

🞑 compositions of projective transforms are also 

projective transforms

8 DOF: vectors (and therefore 
matrices) are defined up to scale)
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Hierarchy of Linear 2D Transformations
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Issues with geometric ops

◻ During point and spatial processing

🞑 Source and destination images were the same size

🞑 Color depth was occasionally different

◻ During geometric processing

🞑 Source and destination images may not be the same size

🞑 Output locations may not be integer values!

🞑 ‘Gaps’ may occur when mapping inputs to outputs
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Point Transformation

◻ Example.  Consider rotating an image by 30 degrees clockwise.  Note that 
cos(30) is .866 and sin(30) is -.5.

◻ The transformation is given by

◻ Consider relocating the sample at (10, 20)

10
20
1
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Two Issues

◻ Two issues:

🞑 Dimensionality:  The destination image may not be large enough to contain all of the 
processed samples

🞑 Mapping: Transformed locations are not integers: How can we place a source sample at a 
non-integer location in the destination?
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Two Issues: Dimensionality

◻ Consider a source image that is rotated about the origin such that some 
pixels are mapped outside of the bounds of the source.  

◻ Implementations must allow the destination to contain the entire rotated 
image.

🞑 Both the width and height of the destination image must be increased beyond that 
of the source. 

🞑 Can compute the destination dimensions by transforming the bounds and using the 
width and height of the bounds as the destination dimensions. 
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Two Issues: Mapping

◻ how integer-valued source coordinates are mapped 
onto integer-valued destination coordinates

🞑 Forward mapping takes each pixel of the source image and 
copies it to a location in the destination by rounding the 
destination coordinates so that they are integer values.

■ generally poor results since certain pixels of the destination image 
may remain unfilled.  

■ Example: a source image is rotated by 45 degrees using a forward 
mapping strategy. 

■ Example: scaling an image to make it larger!
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Forward Warping

◻ Send each pixel’s intensity/color f(x) to its corresponding location   x’ = 
T(x) in g(x’)

• What if pixel lands “between” two pixels?

Szeliski

f(x) g(x’)
x x’

T(x)
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Forward Mapping

🞑 Forward mapping:

🞑 Problems with forward mapping due to sampling:

■ Holes (some target pixels are not populated)

■ Overlaps (some target pixels assigned few colors) 

Source Target
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Forward Mapping
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Inverse/Backward Warping

◻ Get each pixel’s color/intensity g(x’) from its corresponding location     x =
T-1(x’) in f(x)

• What if pixel comes from “between” two pixels?

Szeliski

f(x) g(x’)
x x’

T-1(x)
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Backward mapping

◻ Backward mapping solves the gap problem caused by forward mapping. 

🞑 An empty destination image is created and each location in the destination is mapped backwards onto the 
source. 

🞑 The source location may not be integer-valued coordinates; hence a sample value is obtained via 
interpolation.

◻ Let T be a given affine transform matrix and 

🞑 let x = [x, y, 1]T be a location in the given source image 

🞑 x′ = [x′,y′,1]T be a location in the destination image such that

◻ We can backward map the transformation as

x′ = Tx

x = T−1 x′ 
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Basic Inverse Operations

◻ Inverse Mapping of a point (x’,y’) to (x,y) 

Rotation 

Translatio
n

scalin
g39



Inverse Transformations 

◻ Translation :

◻ Scale:

◻ Rotation:

◻ Shear:
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Inverse Transformations 

◻ The inverse of a 2D linear 
transformation is

◻ Let an affine transformation matrix
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Inverse Transformations 

◻ The inverse of a 2D linear 
transformation is

◻ Let an affine transformation matrix
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Inverse Transformations 

◻ Let an affine transformation matrix
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Backward Mapping

∙ Inverse mapping:

∙ Each target pixel assigned a single color.

∙ Color Interpolation is required.

TargetSource
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Example: Scaling along X

◻ Forward mapping:

◻ Backward mapping: 

(0,0)

(0,0)

Source Target

Source Target

x

y

X’

y’

X’

y’

x

y
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Interpolation

◻ What happens when a mapping function calculates a fractional pixel address?

◻ Interpolation:  generates a new pixel by analyzing the surrounding pixels.
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Interpolation

◻ Creates new samples from existing image samples.  

◻ Increases the resolution of an image by adding virtual samples at all 
points within the image boundary. 

◻ Common interpolation techniques:

🞑 zero order – nearest neighbor

🞑 first order – (bilinear)

🞑 second order – (bicubic)
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Nearest Neighbor

◻ Nearest neighbor interpolation. 

🞑 Assume that a destination location (x’ y’) maps backward to source location (x, y).

🞑 The source pixel nearest location (x, y) is located at (round(x), round(y)) and the 
source pixel at that image is then carried over as the value of the destination.

◻ Nearest neighbor interpolation is computationally efficient but of 
generally poor quality, producing images with jagged edges and high 
graininess.

48



Nearest Neighbor Interpolation

◻ The assign value is taken from the pixel closest to the generated location:

◻ Advantage: 

🞑 Fast

◻ Disadvantage: 

🞑 Jagged results

🞑 Discontinuous results
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Bilinear Interpolation

◻ The assign value is a weighted sum of the four nearest pixels. 

◻ Each weight is proportional to the distance from each existing pixel.
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Bilinear Interpolation

◻ Bilinear interpolation assumes that the continuous image is a linear 
function of spatial location. 

🞑 Linear, or first order, interpolation combines the four points surrounding location 
(x,y)  

🞑 (x, y) is the backward mapped coordinate that is surrounded by the four samples at 
(j,k) (j, k+1), (j+1, k), and (j+1, k+1)
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Bilinear Interpolation

◻ Bilinear interpolation is a weighted average where pixels closer to the backward mapped coordinate are 
weighted proportionally heavier than those pixels further away. 

◻ Bilinear interpolation acts like something of a rigid mechanical system

🞑 Two rods vertically connect the four samples surrounding the backward mapped coordinate.   

🞑 A third rod is connected horizontally which is allowed to slide vertically up and down the fixture. 

🞑 A ball is attached to this horizontal rod and is allowed to slide freely back and forth across the central rod. 

🞑 The height of the ball determines the interpolated sample value wherever the ball is located. 

🞑 In this way it should be clear that all points within the rectangular area bounded by the four corner posts have implicit, or interpolated, 
sample values.
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Bilinear Interpolation

(j,k) (j+1,k)

(j,k+1) (j+1,k+1)

(x,y)

b

a
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Example
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Original Image Nearest N.
Interpolatio

n

Example
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Original Image Bilinear 
Interpolatio

n

Example
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Original Image

Nearest N. 
Interpolatio

n
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Original Image

Bilinear
Interpolatio

n
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Bicubic Interpolation

◻ In bi-cubic interpolation, the destination sample is a non-linear weighted 

sum of the 4x4 nearest pixels of the reverse mapped location.

◻ Properties of second order interpolation

🞑 everywhere continuous

🞑 more computational effort required
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Bicubic Interpolation
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How can we find the right coefficients?

◻ Denote the pixel values  Vpq {p,q=0..3}

◻ The unknown coefficients are aij {i,j=0..3}

s

t

• We have a linear system of 16 
equations with 16 coefficients.

• The pixel’s boundaries are C1

continuous (continuous derivatives 
across boundaries).
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N.N Bilinear Bicubic
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Interpolation

◻ Good interpolation techniques attempt to find an optimal balance between three 
undesirable artifacts: edge halos, blurring and aliasing.

x4 scaling

N.N Bilinear Bicubic
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Bicubic
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Applying the Transformation

T = ……  % 2x2 transformation matrix
[r,c] = size(img)

% create array of destination x,y coordinates
[X,Y]=meshgrid(1:c,1:r);

% calculate source coordinates
sourceCoor = inv(T) * [X(:) Y(:) ] ‘  ;

% calculate nearest neighbor interpolation
Xs = round(sourceCoor(1,:));
Ys = round(sourceCoor(2,:));

indx=find(Xs<1 | Xs>r);   %out of range pixels
Xs(indx)=1; Ys(indx)=1;

indy=find(Ys<1 | Ys>c);    %out of range pixels
Xs(indy)=1; Ys(indy)=1;

% calculate new image
newImage = img((Xs-1).*r+Ys);
newImage(indx)=0; newImage(indx)=0; 
newImage = reshape(newImage,r,c);
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0     1     2

Numerical Example: 30° Rotation

2 5 3

6 1 4

8 7 9

4 5 3

x' = 2cos30 – 3sin30 = 0.23 = 0

3 

2

1

0

y

y' = 2sin30 + 3cos30 = 3.6 = 4

x

x' = 0cos30 – 3sin30 = -1.5 = -2

y' = 0sin30 + 3cos30 = 2.6 = 3

-2   -1    0     1     2 
x'

y'

x’ = 2cos30 – 0sin30 = 1.73 = 2

y’ = 2sin30 + 0cos30 = 1

4

3 

2

1

0x' = 0cos30 – 0sin30 = 0 

y' = 0sin30 + 0cos30 = 0
Min 
x’

Max x’

Min 
y’

Max y’
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x = 1cos30 + 2sin30 = 1.87

y = -1sin30 + 2cos30 = 1.23

J=1, k = 1, a = 0.87, b =0.23

0     1     2

2 5 3

6 1 4

8 7 9

4 5 3

3 

2

1

0

y

x
-2   -1    0     1     2 

x'

y'

4

3 

2

1

0

8
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Final
0 padding an bilinear intp.

0 0 2 0 0

1 4 3 2 0

1 5 3 8 2

0 5 7 6 2

0 1 4 2 0

-2   -1    0     1     2 
x'

y'

4

3 

2

1

0

0     1     2

2 5 3

6 1 4

8 7 9

4 5 3

3 

2

1

0

y

x
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Computation in 
excel
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Computation in 
excel
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Non Linear 2D Transformations

◻ Non linear transformations do not necessarily  preserve straight lines.

◻ Methods:

🞑 Piecewise linear transformations

🞑 Non linear parametric mapping
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Non Linear 2D Transformations
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Non Linear 2D Transformations

◻ Twirl:

🞑 Rotate image by angle α at center or anchor point (xc,yc)

🞑 Increasingly rotate image as radial distance r from center
increases (up to rmax) 

🞑 Image unchanged outside radial distance rmax
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Non Linear 2D Transformations
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Non Linear 2D Transformations

75



Non Linear 2D Transformations
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Non Linear 2D Transformations
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Non Linear 2D Transformations
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Non Linear 2D Transformations

79



Non Linear 2D Transformations
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Polynomial Transformations

◻ It belongs to the class of nonlinear mappings.

◻ it can approximate wider group of transformations than for example the affine 
mappings.

◻ It can be defined as follows y = W · P (x)

x denotes the input vector (a point), y is an output vector, 
W is a transformation matrix and P denotes a polynomial on x.

the second-order polynomial transformation for which W 
and P can be stated as follows:
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Polynomial Transformations

◻ In contrast to the affine transformations – where elements of the 
transformation matrix can easily be found from given intuitive parameters, 
such as a rotation angle or scale 

◻ The 12 parameters wij in W need to be determined for a mapping are usually 
unknown in analytical form. 

◻ This can be achieved after manual (empirical) choice of the number of control 
points (at least six, since each point gives two equations) and their 
corresponding positions in the output image. 

◻ Then the eqn is solved for W. For the more general case of more than six 
corresponding points this can be achieved by the least-squares method
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Polynomial Transformations - inverse warping 

W = [0, 1, 0, 0.001, −0.001, 0.001] 
[0, 0, 1, 0.001, −0.001, 0.001]; 

W = [0, 1, 0,    0,     −0.001,    0   ] 
[0, 0, 1, 0.001, −0.005, 0.001]83



◻ Digital Image Processing – Chapter 21

🞑 An Algorithmic Introduction Using Java

■ Wilhelm Burger • Mark J. Burge

◻ An Introduction to 3D Computer Vision Techniques and Algorithms –
Chapter 12

■ Bogusław Cyganek, J. Paul Siebert

◻ Fundamentals of Digital Image Processing – Chapter 7
■ Chris Solomon, Toby Breckon

◻ Principles of Digital Image Processing, Core Algorithms– Chapter 10
■ Wilhelm Burger • Mark J. Burge
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