


Geometric Operations

Previous operations have taken a sample at some location and changed the
sample value (the light intensity) but left the location unchanged.

Geometric operations take a sample and change it’s location in the destination
while leaving the sample value unchanged.

In general, geometric operations take a source pixel at some location (x,y) and
map it to location (x’, y’) in the destination.

(x.¥) \'(X’,y’)

I(x,y) I'(xy’)



Image transformations can we do?

Filterin

changes range of image function changes domain of image function




Warping example

- object recognition
o 3D reconstruction
- augmented reality

o image stitching
Given a set of matched feature

points:
!
{:’I’:?;} :‘B‘L}
point in one point in the
image other image
and a
transformation:
:13’ _ f(:l? ) What kind of transformation funfions are
f o ; P there?
transformatio
n / \ parar:eter
. function .
find the best estimate of the D
parameters



2D transformations

affine perspective cylindrical



Affine Transformations

The mapping between (x,y) and (x’, y’) can be generalized as
/
T T.(x,y),
/
Y Ty (37: y)

Tx and Ty are transformation functions that produce output coordinates based on the x and y coordinates of
the input pixel.

Both functions produce real values as opposed to integer coordinates and are assumed to be well defined at
all locations in the image plane.

| Ixy) =(Cy)= I(TxY), T(x)) |

=
SV T )

I(x,y) I'(x",y’)



Affine Transformations

The simplest kind of transformations are linear
X" and y’ are linearly related to (x, y)

All linear transformations are known as affine transformations
’ — —
x =T.(x,y)=ax+by+c
' — —
y =T,(x,y)=a,x+b,y+c,

Properties of affine transformations
A straight line in the source is straight in the destination

Parallel lines in the source are parallel in the destination

The six coefficients determine the exact effect of the transform.
7



Affine Transformations

x' =T (x,y)=ax+by+c
V' Zf;(x,y) =a,x+b,y+c,

Can be written in homogeneous matrix equation

x =TX

4

X a b c, || x

yil=|la, b, ¢, ||y




Affine Transformations - Translation

. I(x,y) I'x"y’)




Affine Transformations - Scaling

To shrink or zoom the size of an image (or part of an image).
To change the visual appearance of an image;
To alter the quantity of information

To use as a low-level pre-processor in multi-stage image processing chain which operates on
features of a particular scale.

Unifor Non-
m uniform
Scaling Scaling
. X' s. 0
r__ _
x'=T(xy),=x*s, vl=lo s
r _ % _
y'=T(xy),=y*s, g
| 0 O

10 - - - JL _



Affine Transformations - Rotation

maps the input position onto a output position by rotating it through an angle about an
origin.

Commonly used to improve the visual appearance of an image.

useful as a pre-processor in applications where directional operators are involved.

Mapping of a point (x,y) to another (x’,y’) through a counter-clockwise rotation of 6

x'=T.(x,y)=xcosf—ysinO
y'=T,(x,y)=xsin0 + ycos0

x'| [cos® —sin@ O]
o) y'|=|sin@ cosO® Ofy

.0 1 0 0 1

(x, )

g - — - —_— —

—
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2D planar transformations

Polar coordinates...
x=1cos (p)
y =15in (¢)
x'=rcos (¢ +0)
y'=rsin (¢ +0)

, z' . . .
T = { y } Trigonometric Identity...
b x'=1 cos(p) cos(0) —r sin(¢) sin(0)
~ ©  rotation around y'=rsin(@) cos(0) + r cos(¢) sin(0)
' the origin .
Substitute. ..
\ ro,o xz= { ﬂ x'=x cos(0) - y sin(0)
S0 N '=X si +
EEARAEA p V= sin® -y cos(®

or in matrix x! cosf —sinf T
form: y | | sinf cosf 7



Affine Transformations

Shear: Reflection @

x! 1 th 011x X: 1 0 o] [x
[y' =[shy 1 0 [y U Il N | B4
1 0 o 1ll1 1 0 0 1111
x' -1 0 O0][x
y’] =0 1 0] Y]
1 0 0 1l11

13



Types of linear 2D transformations

Rigid (Euclidean) transformation: Before  After

Translation + Rotation (distance preserving).

Similarity transformation:

Translation + Rotation + Uniform Scale (angle preserving).
Affine transformation: D

Translation + Rotation + Scale + Shear (parallelism preserving).
Projective transformation

Cross-ratio preserving

All above transformations are groups where Rigid c Similarity

C Affine C Projective U ﬂ

14



Affine Transformations

Explain what the following transformation matrices accomplishes

1.0 [ 0.25| 0.0
0.5 | 1.0 | 0.0
00 | 0.0 | 1.0

15



Affine Transformations

Explain what the following transformation matrices accomplishes

.87 | -0.5 | 0.0
05 | .87 | 0.0
00 | 0.0 | 1.0

16



Affine Transformations

Explain what the following transformation matrix accomplishes

0.5 | 0.0 | 0.0
0.0 [ 20 | 0.0
00 | 0.0 | 1.0

17



Affine Transformations

Explain what the following transformation matrices accomplishes

1.0 [ 0.25| 0.0
00 ( 1.0 | 0.0
00 | 00 | 1.0

18



Homogeneous Coordinates

Homogeneous Coordinates is a mapping from R" to R"*:

(x,y) = (X, Y, W) = (x,1y,1)

Note: (tx ty,t) all correspond to the same non-homogeneous point (x,y). E.g.
(2,3,1)=(6,9,3) =(4,6,2).

Inverse mapping:

19



Some 2D Transformations — homogeneous eqn

Translation :
x' 1 0 t,|[x X+ ty
5] 2 el
wl Jo o 1]l1 1
:T(tx,ty)x
Scale:
x' s, 0 0]rx
[yf {5 s o [y
w' 0o o0 1|1

20

R

X' = R(g)X

Shear:

X
y
w

!

!

Rotation:

cos 6
sin @

!

1

= [sh
0

X' = Sh(sh sh )X

XJ

y

CcoS 9

sh,

1
0

y

—singd 0
0 y
1111

0
0
1

X
)
1



Affine Transformations

A single homogeneous matrix can also represent a sequence of individual
affine operations.

Let A and B represent affine transformation matrices

the affine matrix corresponding to the application of A followed by B is given as BA

BA is itself a homogeneous transformation matrix.

Matrix multiplication, also termed concatenation, therefore corresponds to the sequential
composition of individual affine transformations.

Note that the order of multiplication is both important and opposite to the way the
operations are mentally envisioned.

21



Affine Transformations

22

While we speak of transform A followed by transform B, these operations are
actually composed as matrix B multiplied by (or concatenated with) matrix A.

Assume, for example, that matrix A represents a rotation of 30 degrees about
the origin and matrix B represents a horizontal shear by a factor of .5. The
affine matrix corresponding to the rotation followed by shear is given as BA.

B A B.A

1 05 0 866 —0.5 0 1.116 —0.067 0
0 1 0|-] 05 86 0|=] 05 86 0. (7.4
(

0 0 1 0 0 1



Matrix composition

Transformations can be combined by matrix multiplication:

e =

X'l ([1 0 #x]|[cos® =-sin® O0][sx 0 0]}
Y'I=(10 1 #||sm® cos® O[O0 sy O
w| ([0 0 1] 0 0 1jjo 0 1]
p’ = translation(t,t,) rotation(0) scale(s,s) P

Does the multiplication order matter?

23




Some 2D Transformations — homogeneous eqgn

Translation : Rotation:
X' 1 0 ¢ |x] [x+z,] S

| — 1 — :
Y 0 Iy y+i, Y'|=|sin® cosf® O

LT AL L W'l | 0 0 1
Scale: X [s. 0 0][x] Shear: [x'7 1 4 o1
Y'|= Sy 0 y Y'|= b 1 y
w10 0 11 V00 1]
Affine: X' Ta b ¢t Tx Projective:

X' a

b
Y !
'l 1o o 111 Y—cdtyy
W' e f

24
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Affine transformations
o Combinations of arbitrary (4-DOF) linear transformations; and translations

o Properties of affine transformations:

~J)

origin does not necessarily map to origin

lines map to lines 'Y'1 [a b ¢
parallel lines map to parallel lines V'i=|d e fl|ly
ratios are preserved w' 0O 0 1]lw
compositions of affine transforms are also affine transforms
Remains
same
 ——

25



Projective transformations

o Combinations of
affine transformations; and

projective warps

Define base quadrilateral

After projective transformation Cropped image

26



Projective transformations

o Combinations of
X

affine transformations; and B a b c]
' —
projective warps y' =|d e f Y
W g h 1|lw
- PropertieS' 8 DOF: vectors (and therefore

matrices) are defined up to scale)
origin does not necessarily map to origin

lines map to lines
parallel lines do not necessarily map to parallel lines

. . ﬁ
ratios are not necessarily preserved .

compositions of projective transforms are also
projective transforms

27
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Hierarchy of Linear 2D Transformations

Group Matrix Distortion

Invariant properties

Concurrency, collinearity, order of
contact: intersection (1 pt contact);

Projective Z“ 212 213 ﬂ tangency (2 pt contact); inflections
8 dof h21 h22 ; = (3 pt contact with line); tangent dis-
3. s2 Mies ﬂ continuities and cusps. cross ratio
(ratio of ratio of lengths).
Parallelism, ratio of areas, ratio of
AF @11 Q12 iy I\\ lengths on collinear or parallel lines
6 d;lfe [ G21 Q22 Iy } B (e.g. midpoints), linear combinations
0O 0 1 of vectors (e.g. centroids).
The line at infinity, 1.
Similarity i;u ::;z i‘” J Ratio of lengths, angle. The circular
4 dof 021 0 1’” points, I, J (see section 1.7.3).

0 0 1

Euclidean ,:11 :12 ix Q
3 dof AL ez Ty _

Length, area




Issues with geometric ops

During point and spatial processing
Source and destination images were the same size

Color depth was occasionally different

During geometric processing
Source and destination images may not be the same size
Output locations may not be integer values!

‘Gaps’ may occur when mapping inputs to outputs

29



Point Transformation

Example. Consider rotating an image by 30 degrees clockwise. Note that
cos(30) is .866 and sin(30) is -.5.

The transformation is given by

x’
y' | =
1

Consider relocating the sample at (10, 20)

866 —0.5 0
0

5 xT
5 -y | (7.5)
0 0 1 1

0.5 .866

[ 2 1 { 866 —0.5 0 W 10 { —1.34 1
y =1 05 866 0! 20 = 22.32 |. (7.6)
1 J L 0 0 1 J 1 L 1 J

30



Two Issues

Two issues:

Dimensionality: The destination image may not be large enough to contain all of the
processed samples

Mapping: Transformed locations are not integers: How can we place a source sample at a
non-integer location in the destination?

(@) Source image. (b) Rotation. (c) Expanded view of rotated image.

Figure 7.2. Destination dimensionality under rotation.

31



Two Issues: Dimensionality

Consider a source image that is rotated about the origin such that some
pixels are mapped outside of the bounds of the source.

Implementations must allow the destination to contain the entire rotated
Image.

Both the width and height of the destination image must be increased beyond that
of the source.

Can compute the destination dimensions by transforming the bounds and using the
width and height of the bounds as the destination dimensions.

32



Two Issues: Mapping

how integer-valued source coordinates are mapped
onto integer-valued destination coordinates

Forward mapping takes each pixel of the source image and
copies it to a location in the destination by rounding the
destination coordinates so that they are integer values.

generally poor results since certain pixels of the destination image
may remain unfilled.

Example: a source image is rotated by 45 degrees using a forward
mapping strategy.

Example: scaling an image to make it larger!

33




Forward Warping

o Send each pixel’s intensity/color f(x) to its corresponding location
T(x) in g(x’)

e What if pixel lands “between” two pixels?

34



Forward Mapping

Forward mapping:

x'=T.(x,)
y’ = Ty (x5 y)
Source Target
>
>
>
>

Problems with forward mapping due to sampling:
Holes (some target pixels are not populated)

Overlaps (some target pixels assigned few colors)

35




Forward Mapping

36

def rotator{angle):
ca = np.cos{angle)
s@ = np.sin{angle)
R = np.array([[ca, -sal, [sa, call)
def rotate(t):
return pixel(R @ np.array(t))
return rotate

g = plt.imread('images/peppers.png')
plt.subplot({131); plt.imshow(a);

b = geolp_fwd(a, rotator{np.pifs))
plt.subplot{132); plt.imshow(b);

plt.subplot(133); plt.imshow(b[:64,:64]7);

plt.show();




Inverse/Backward Warping

o Get each pixel’s color/intensity g(x’) from its corresponding location
T*(x’) in f(x)

e What if pixel comes from “between” two pixels?

37



Backward mapping

Backward mapping solves the gap problem caused by forward mapping.

An empty destination image is created and each location in the destination is mapped backwards onto the
source.

The source location may not be integer-valued coordinates; hence a sample value is obtained via
interpolation.

Let T be a given affine transform matrix and
let X =[x, y, 1]T be alocation in the given source image

x'=[x")",1]7 be a location in the destination image such that
x'=Tx
We can backward map the transformation as

x=T1x'

38



Basic Inverse Operations

Inverse Mapping of a point (x’,y’) to (x,y)

(1 0 — |[x
y|=10 1 -t |
1] 10 0 1 |1

Translatio

n

y|=|-sin@ cosf O

o y 0 0] . 1y Lo 0 1
X Sy x'
y|=| O % 0 J" Rotation
] g 1
- - 0 0 |- -
_scalin )

39 g

- cosO® sinf® 0] x




Inverse Transformations

Translation :
1 0 —t,
T(t ty) = 0 1 -t
O 0 1
Scale:
"1
— 0 0
Sx

S(S SY) 0 1 0

40

Rotation:
cosf sinf 0
R(e) —sinf cosf6 0
0 0 1
Shear:
—1 sh,
1—-sh,ssh, 1—sh,sh,
Sh(Sh Sh) — Shy —1
1—-sh,ssh, 1—sh,sh,

0
0

-




Inverse Transformations

The inverse of a 2D linear )
transformation is A =

Let an affine transformation matrix M =

— |=<.
]

A

S

-~

<

a b _1_ 1

c d " ad — be
a b t |

c d L,

0 0 1

X =MJX

x| [A T

_1_ _0 1




Inverse Transformations

The inverse of a 2D linear A1 { a b
transformation is c d
a b
Let an affine transformation matrixM =| ¢ d
0 0
X = M.x
x| [a bt ][ x
Vil=lce d ¢, ||y
1] (0 0O 11

tx
ty
1 —
x| ~ AT x
1] |0 11




Inverse Transformations

Let an affine transformation matrix
X =Ax+T
Ax=x-T
x=A'X-A'T

-1 a b 1_ 1
A _{C d]  ad — be
a b t_wa b
C c?<ty ‘c><d
0O 0 1]0 O

d =b
1
—Cc a
ad — bc
_0 0




Backward Mapping

Inverse mapping: ‘= T—l(xr )

y=T7"(x,y"

Source Target
-
e e
' //
N b

Source image. Destination image.

Figure 7.4. Reverse mapping.

Each target pixel assigned a single color.

Color Interpolation is required.

44



Example: Scaling along X

Forward mapping:

Source /\ Target
—_ .(0,0)

Y °

’ |—F K\y/:/

X X’
Backward mapping: x=x'/2; y=y'

Source %@ arget
e N NN
./ \. \. \. \.

L

45



Interpolation

What happens when a mapping function calculates a fractional pixel address?

-t=-~
s ~q
7 N
ya N
7/ \
’ ® \
® \
\ /'
\
\‘ 4
~ //
\\~ _f’

N

mn e
.

D
o @

et

b )

Interpolation: generatesa-new pixel by analyzi rounding pixels.

®
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Interpolation

Creates new samples from existing image samples.

Increases the resolution of an image by adding virtual samples at all
points within the image boundary.

Common interpolation techniques:
zero order — nearest neighbor
first order — (bilinear)

second order — (bicubic)

47



Nearest Neighbor

Nearest neighbor interpolation.
Assume that a destination location (x” y’) maps backward to source location (x, y).

The source pixel nearest location (x, y) is located at (round(x), round(y)) and the
source pixel at that image is then carried over as the value of the destination.

Nearest neighbor interpolation is computationally efficient but of
generally poor quality, producing images with jagged edges and high
graininess.

48



Nearest Neighbor Interpolation

The assign value is taken from the pixel closest to the generated location:

I'(x', y") = I(round (T, (x', ")), round (T, (x', "))

Advantage: = [(round(x),round(y))

Fast

Disadvantage:
Jagged results

Discontinuous results

.:;\. o

49



Bilinear Interpolation

The assign value is a weighted sum of the four nearest pixels.

Each weight is proportional to the distance from each existing pixel.

_____________ .‘_-_-_---+----\\. Y

50



Bilinear Interpolation

Bilinear interpolation assumes that the continuous image is a linear
function of spatial location.

Linear, or first order, interpolation combines the four points surrounding location
(%,y)

(x, y) is the backward mapped coordinate that is surrounded by the four samples at

51



Bilinear Interpolation

52

Bilinear interpolation is a weighted average where pixels closer to the backward mapped coordinate are
weighted proportionally heavier than those pixels further away.

Bilinear interpolation acts like something of a rigid mechanical system
Two rods vertically connect the four samples surrounding the backward mapped coordinate.
A third rod is connected horizontally which is allowed to slide vertically up and down the fixture.
A ball is attached to this horizontal rod and is allowed to slide freely back and forth across the central rod.
The height of the ball determines the interpolated sample value wherever the ball is located.

In this way it should be clear that all poir
sample values.

the four corner posts have implicit, or interpolated,

(i+1,k)

(j+1,k+1)

Figure 7.5. Bilinear interpolation.



Bilinear Interpolation

G,k) g+1.,k)
_______ :____________‘______________________
Eb
T
Gktl)® ® (+1lk+1)
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Example

54

Figure 7.6. Interpolation example.
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Bicubic Interpolation

In bi-cubic interpolation, the destination sample is a non-linear weighted
sum of the 4x4 nearest pixels of the reverse mapped location.
Properties of second order interpolation

everywhere continuous

more computational effort required

B AR R f‘ """" o ° °
01'\
el Lol E.— _______ o \\ ‘ °
° ¢ ib )
59 |




Bicubic Interpolation

_inear l

60 Bilinear Bicubic




How can we find the right coefficients?

Denote the pixel values V, {p,q=0..3}

The unknown coefficients are ga; {i,j=0..3}

Vo = Zaij.sitj for p,q=10..3},

i,j=0

e We have a linear system of 16

equations with 16 coefficients.

e The pixel’s boundaries are C,
continuous (continuous derivatives t

across boundaries).

61






Interpolation

Good interpolation techniques attempt to find an optimal balance between three
undesirable artifacts: edge halos, blurring and aliasing.

x4 scaling

3

N.N Bilinear Bicubic
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Applying the Transformation

T=.... % 2x2 transformation matrix
[r.c] = size(img)

% create array of destination x,y coordinates
[X,Y]=meshgrid(1:c,1:r);

% calculate source coordinates
sourceCoor = inv(T) * [XC)Y() 1" .

% calculate nearest neighbor interpolation
Xs = round(sourceCoor(1,)):
Ys = round(sourceCoor(2,)):

indx=find(Xs<1 | Xs>r); %out of range pixels
Xs(indx)=1; Ys(indx)=1;

indy=find(Ys<1 | Ys>c); %out of range pixels
Xs(indy)=1; Ys(indy)=1;

% calculate new image

newImage = img((Xs-1).*r+Ys):
newImage(indx)=0; newImage(indx)=0;
newImage = reshape(newImage,r,c);



Numerical Example: 30° Rotation

A

N|OW|IONN
WO(N|W

3
2
1
0

5
1
7
5
1

0 2

>X
x' = 0cos30 —0sin30=0 |
y' =0sin30 + 0cos30=0 ~ Min

)

y

. Min
X' =0c0os30—-3sin30=-1.5=-2 W’
y' =0sin30 + 3c0s30=2.6 =3

. Maxx
X' =.c0830—-0sin30=1.73=2
vy’ = 7sin30 + Ocos30 =1
X'=.c0s30—-3sin30=0.23=0

— Maxy’

%'6= sin30 + 3cos30=3.6=4

N W B

-2 -1 0

1

2




67

t3(2(5 |3
216 |1 |4
Y1817 o
014 |5 |3
012>X

X =1cos30 + 2sin30 = 1.87
y =-1sin30 + 2cos30 =1.23

J=1,k=1,a=0.87,b=0.23

I'(x',y" = 2 ] [
8.74
=[.77 .23] 13_61] = 7.56 =8

N W B

1
y' 0
2 -1 0 1 2 |
> X
G,k) (G+1,k)
_____r ________ .._ _________________
b
T
Gkt e ® (i+1lk+1)

j=LxJ kztyJ a=x—j b=y—k

fe 40 _ I(k') I(+1k) 1—0a
Fehy) = [1-68: I(j,kJrl) I(?+1,k+1)}[ a }



, sl0l0l2(0]0

31114(312|0
2/1 15|38 2
110(5|7(6]2

vy 0lo|1]4]2]0

1

2 |16

1187 |9
01415 |3

431215 |3

»>X

2

1

-2 -1 0

Final

0 padding an bilinear intp.
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Computation in
excel
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Computation in

det 1©%cCel
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Non Linear 2D Transformations

= Non linear transformations do not necessarily preserve straight lines.
- Methods:

Piecewise linear transformations

Non linear parametric mapping

71




Non Linear 2D Transformations

Original

Spherical
72




Non Linear 2D Transformations

Twirl:

Rotate image by angle a at center or anchor point (x_Y,)

Increasingly rotate image as radial distance r from center

increases (uptor,,,,)

Image unchanged outside radial distance r,,,

, ;

. Te+1-cos(f)  for 7 < rpax /
T, z=9 | ey = & — B,
@ 0T T3 Priae,

dy == l/, — Yes

r=./dz +d,

B = Arctan(dy, d;) + o - (&’ﬁé‘"’i)
max

¢ 5 7
Yo +7-sin(f)  for r < rpayx

Y :
| y, fOl’ T2 I'max.
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Non Linear 2D Transformations

Ripple +-4-

e Ripple causes wavelike displacement of
image along both the x and y directions

TI_I ¢ - 'y').

' + ay - sill(

<A

/

Y1 R )
Ty '

o

_1 ; = / . .
Ty . Y=Y T ay .\111(

e Sample values for parameters (in pixels) are
» 7,=120
e 7,=250
e a~10
® aF 15
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Non Linear 2D Transformations

75

e Sample values p =1.8andr, , = half image width

Spherical Transformation

e Imitates viewing image through a lens placed over image
Lens parameters: center (x,, Y. ), lens radius r,,,, and refraction index p

wwww
X XN
L X RN
L R R
0

1

XA &
7 |l
fi\

3

(4

<tan(7;) for » < max

- —— <

Tl o=ua" — J ;

X
! () for r > "max
4 f \ -
24 . AR t&\ll(.-fy ) for 7 < rmax
I, " y=y — :
| 0 for r > rmax,
de = &' =, r= \/113 =2 ‘fﬁ :
_ — / SO . 92 9
f]y = Y —Ye. o \/'rnax = e
8. = (1=1Y .80t (— i ).
(11 . ein—1(__dy
By = (1=3) -sin™ (s )-

e




Non Linear 2D Transformations

]
Radial wave transformation: This transformation simulates an
omni-directional wave which originates from a fixed center point
x. (see Fig. 21.11(b)). The inverse transformation (applied to a
target image point ' = (a/,v’)) is

)
x. for r =0,

\mc _I_ T+5

r

T 1z = (21.74)

() —x.) forr >0,

with r = ||’ — x.|| and § = a-sin (27r/7). Parameter a specifies |
the amplitude (strength) of the distortion and 7 is the period
(width) of the radial wave (in pixel units).

76 (b) Radial wave (a = 10.0, 7 = 38)



Non Linear 2D Transformations

Clover transformation: This transformation distorts the image
in the form of a N-leafed clover shape (see Fig. 21.11(c)). The
associated inverse transformation is the same as in Eqn. (21.74)
but uses

d=a-r-cos(N-«), witha=/(z'—=x,.) (21.75)

instead. Again r = ||’ — x.|| is the radius of the target image = . -
point x’ from the designated center point x.. Parameter a speci-

fies the amplitude of the distortion and N is the number of radial | 'I : /%

“leaves”.

77 (c) Clover (a = 0.2, N = 8)



Non Linear 2D Transformations

Spiral transformation: This transformation (see Fig. 21.11(d))
is similar to the twirl transformation in Eqns. (21.63)—(21.64),
defined by the inverse transformation

Tlz=wx +r- (ETE(%) | (21.76)

with 8 = Z(x'—x.)+a-r and r = ||’ —x_|| denoting the distance ,
from the target point &’ and the center point x.. The angle 3 /
increases linearly with r; parameter a specifies the ‘velocity” of
the spiral.

(d) pira;l (a = 0.01)
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Non Linear 2D Transformations

Angular wave transformation: This is another variant of the
twirl transformation in Eqns. (21.63)—(21.64). Its inverse trans-
formation is the same as for the spiral mapping in Eqn. (21.76),
but in this case

B =<' —x)+a sin(3E). (21.77)

Thus the angle 3 is modified by a sine function with amplitude
a (see Fig. 21.11(e)).

(e) Angular wave (a = 0.1, 7 = 38)
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Non Linear 2D Transformations

Tapestry transformation: In this case the inverse transformation
of a target point ' = (z',7') is

L sin(i—: (2! — x,))
I' :x=x +a- (Sln(f__:(y!_yc))) ) (2178)

again with the center point . = (x.,y.). Parameter a specifies

the distortion’s amplitude and 7,, 7, are the wavelengths (mea-

sured in pixel units) along the x and y axis, respectively (see Fig.
21.11(f)).

S0 (f) Tapestry (a = 5.0, 7, = 7,, = 30)



Polynomial Transformations

It belongs to the class of nonlinear mappings.

it can approximate wider group of transformations than for example the affine
mappings.

It can be defined as follows ¥ = W - P (x)

x denotes the input vector (a point), y is an output vector,
W is a transformation matrix and P denotes a polynomial on x.

the second-order polynomial transformation for which W -1 ]
and P can be stated as follows: Xi X — |:X1 ]
X:
X9 2
W — Win Wiz Wiz Wia Wis  Wis P(x) = 2
— 1
W21 Wz W23 Waq Wos Wae |, ¢ X1 X0 y = [J’l}
X5 ¢
L 72 d6x1
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Polynomial Transformations

82

In contrast to the affine transformations — where elements of the
transformation matrix can easily be found from given intuitive parameters,
such as a rotation angle or scale

The 12 parameters w; in W need to be determined for a mapping are usually
unknown in analytical form.

This can be achieved after manual (empirical) choice of the number of control
points (at least six, since each point gives two equations) and their
corresponding positions in the output image.

Then the egn is solved for W. For the more general case of more than six
corresponding points this can be achieved by the least-squares method



Polynomial Transformations - inverse warping

W =0, 1, 0, 0.001, -0.001, 0.001] W=1[0,1,0, 0, -0.001, 0O ]
83 [0,0,1,0.001, -0.001, 0.001]; [0, 0, 1, 0.001, -0.005, 0.001]
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Digital Image Processing — Chapter 21
An Algorithmic Introduction Using Java

Wilhelm Burger e Mark J. Burge

An Introduction to 3D Computer Vision Techniques and Algorithms —
Chapter 12

Bogustaw Cyganek, J. Paul Siebert
Fundamentals of Digital Image Processing — Chapter 7

Chris Solomon, Toby Breckon

Principles of Digital Image Processing, Core Algorithms— Chapter 10
Wilhelm Burger ¢ Mark J. Burge
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